SAINT JOSEPH'S PREPARATORY SCHOOL **PHYSICS**

Kinematics:

$$\mathbf{d} = \mathbf{d}_{0} + \mathbf{v}_{0}t + \frac{1}{2}\mathbf{a}t^{2}$$

$$x = x_{0} + v_{0x}t + \frac{1}{2}a_{x}t^{2}$$

$$y = y_{0} + v_{0y}t + \frac{1}{2}a_{y}t^{2}$$

$$v^{2} = v_{0}^{2} + 2a\Delta x$$

Newton's Laws:

If
$$\sum \mathbf{F} = \mathbf{0}$$
 then $\mathbf{a} = 0$
 $\sum \mathbf{F} = m\mathbf{a}$

Ups = Downs + ma

Rights = Lefts + ma

Up(the plane) = Down(the plane) + ma(up the plane)

Into = OutOf

Clockwise = CounterClockwise (torque)

opposite = hypoteneuse
$$\times \sin \theta$$

adjacent = hypoteneuse $\times \cos \theta$
 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$
opposite

Parallel component of weight = $mg \sin \theta$

Perpendicular component of weight $mg \cos \theta$

Static: $F_f \leq \mu_s F_N$

Kinetic: $F_f = \mu_k F_N$

Both static friction and normal forces are reactive in that they vary in magnitude depending upon the other forces that are acting.

$$W = \mathbf{F} \cdot \mathbf{d} = Fd \cos \theta$$
$$\Sigma W = \Delta K$$
$$K = \frac{1}{2} mv^{2}$$

Work:

Momentum:

 $\mathbf{F}t = \Delta(m\mathbf{v})$

Elastic:

Momentum is conserved.

$$m_{\mathbf{A}}\mathbf{V}_{\mathbf{A}1} + m_{\mathbf{B}}\mathbf{V}_{\mathbf{B}1} = m_{\mathbf{A}}\mathbf{V}_{\mathbf{A}2} + m_{\mathbf{B}}\mathbf{V}_{\mathbf{B}2}$$

Kinetic energy is conserved.

$$\frac{1}{2}m_{\mathbf{A}}\mathbf{v}_{\mathbf{A}1}^{2} + \frac{1}{2}m_{\mathbf{B}}\mathbf{v}_{\mathbf{B}1}^{2} = \frac{1}{2}m_{\mathbf{A}}\mathbf{v}_{\mathbf{A}2}^{2} + \frac{1}{2}m_{\mathbf{B}}\mathbf{v}_{\mathbf{B}2}^{2}$$

Relative velocity is reversed.

$$\mathbf{v}_{A1} - \mathbf{v}_{B1} = -(\mathbf{v}_{A2} - \mathbf{v}_{B2})$$

Inelastic

 $m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 = (m_1 + m_2) \mathbf{V}$ Two objects stick together.

 $(m_1 + m_2)\mathbf{v} = m_1\mathbf{V}_1 + m_2\mathbf{V}_2$ One object divides.

Waves:
$$v = f\lambda$$
$$y = A\cos(\omega t + \phi)$$

intensity at threshold of hearing:

$$1 \times 10^{-12} \ w/m^2 = I_0$$

$$dB = 10 \times \log(I/I_0)$$

Open: $\lambda = 2L$ Sound:

Closed: $\lambda = 4L$

Strings: $f_1 = \frac{v}{2L}$

Speed of sound in air: v = 331 + 0.6C

Periodic and Circular Motion:

$$F_{c} = \frac{mv^{2}}{r}$$

$$a_{c} = \frac{v^{2}}{r}$$

$$\omega = 2 \pi f$$

$$T = 1/f$$

$$v = r\omega$$

Periodic and Circular Motion:
$$F_{c} = \frac{mv^{2}}{r}$$

$$a_{c} = \frac{v^{2}}{r}$$

$$a_{c} = \frac{v^{2}}{r}$$

$$F = G \frac{m_{1}m_{2}}{R^{2}}$$

$$Gravity:$$

$$g_{p} = G \frac{m_{p}}{R^{2}}$$

$$v_{e} = \sqrt{\frac{2GM}{R}}$$

$$V_{e} = \sqrt{\frac{2GM}{R}}$$

$$V_{e} = \sqrt{\frac{R^{3}}{R}}$$

$$V_{e} = \sqrt{\frac{R^{3}}{R}}$$

$$V_{e} = \sqrt{\frac{R^{3}}{R}}$$

Kepler's Laws:
$$\frac{R^3}{T^2} = \frac{G}{4\pi^2} M$$

SAINT JOSEPH'S PREPARATORY SCHOOL **PHYSICS**

Doppler Effect:

$$f' = f\left(\frac{v \pm v_0}{v \mp v_s}\right)$$

Torque and Rotation:

$$T = \mathbf{d} \times \mathbf{F} = dF \sin \theta$$

$$I = \sum mr^{2} = \int r^{2} dm$$

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I \mathbf{\omega}$$

$$E_{k} = \frac{1}{2} I \mathbf{\omega}^{2}$$

$$360^{\circ} = 2\pi \text{ radians}$$

$$rpm/60 = f = revolutions per second$$

$$T = \frac{1}{f}; 2\pi f = \omega = \frac{2\pi}{T}$$

$$\alpha = \frac{\Delta \omega}{\Delta t}; \omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 + \frac{1}{2}\alpha t^2$$

$$s = R\theta; v = R\omega; a = R\alpha$$

Periodic motion:

Rotation:

$$T = 2\pi\sqrt{\frac{m}{k}}$$
$$T = 2\pi\sqrt{\frac{l}{g}}$$

Temperature:
$$F = 32 + \frac{9}{5}C$$

$$C = \frac{5}{9}(F - 32)$$

$$K = C + 273.15$$

Heat:

$$Q = cm(\Delta T)$$
$$Q = Lm$$

Fluids:

Bernouli

$$P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$$

Electricity:

$$F = k \frac{Q_1 Q_2}{R^2}$$

$$C = \frac{Q}{V} = k \xi_0 \frac{A}{d} \begin{pmatrix} k \text{ is the dielectric constant} \end{pmatrix}$$

$$E = k \frac{q}{r^2}$$

$$U \text{ (PE)} = -qEd$$

$$\Delta V = -ED$$

$$U \text{ (PE)} = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$

$$V = IR$$

$$P = VI = I^2R = V^2/R$$

$$R_{eq} = \sum_{i=1}^{n} R_i \text{ (Series)}$$

$$R_{eq} = \frac{1}{\sum_{i=1}^{n} \frac{1}{R_i}} \text{ (Parallel)}$$

Total current entering a point is zero.

Total voltage around a closed loop is zero.

$$\mathbf{F}_{M} = q\mathbf{v} \times \mathbf{B} = qvB\sin\theta$$

$$B_{s} = \mu_{0}nI$$

$$B = \frac{\mu_{0}}{2\pi} \frac{I}{r}$$

$$\mathbf{F} = I\mathbf{I} \times \mathbf{B} = IlB\sin\theta$$

Electromagnetism:

$$n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2} = n_{3} \sin \theta_{3}$$

$$d \sin \theta = n\lambda$$

$$n_{m} = \frac{c}{v_{m}}$$

$$c = f\lambda \qquad E = hf$$

$$\frac{1}{d_{0}} + \frac{1}{d_{i}} = \frac{1}{f} \qquad f = \frac{R}{2}$$

Light:

$$F = kd$$

$$U = \frac{1}{2}kd^2$$